115kV / 34.5kV Solar Power Plant/Substation Design Project

Team sdmay19-26

Nur Shuazlan, Tam Nguyen, Ahmed Sobi, Katayi Katanga, Yao Jiang Cheah, Chufu Zhou

Advisor: Dr. Ajjarapu Client: Black & Veatch

http://sdmay19-26.sd.ece.iastate.edu/

Black & Veatch Information

- A global engineering, construction and consulting company which specializes in infrastructure development for power, oil and gas, water, telecommunications, government, mining, and banking and finance markets.
- The largest majority employee-owned company in the U.S, and is ranked by Forbes as one of the largest privately owned companies.
- A large amount of its revenues comes from power.

BLACK & VEATCH

Project Plan

Problem Statement

- General Problem:
 - An increasing need for a growth in the use of renewable energy to reduce enhanced greenhouse effect
 - Prevent high power loss for long distance transmission
 - The Renewable Energy Standards (RES) allow companies to push more toward renewable energy
- Solution:
 - Design a 60 MW solar plant and a 115kV/34.5kV substation

Operating Environment

- Substation and plant must be able to withstand any extreme weather conditions they will be subjected to in Estancia, New Mexico, and must be able to do so for a long time.
 - The design is equipped with all of the necessary protection devices in order to withstand any abnormal voltages that are expected.

Possible Risks

- Defect on components
- Electric shock
 - Electric shock upon substation installation
 - Our design does not include substation grounding

Market and Literature Survey of Similar Products

MISO North Star Solar Project 100 MW capacity:

- Location in Saint Paul, MN
- 100 MW of solar PV capacity(440,000 solar panels)
- Approximately 800 acres of agricultural land
- Single axis tracking technology to maximize production
- Grid connection at the Chisago County substation 115kV

System Block Diagram

Conceptual Sketch

Requirements (Functional/Non-Functional)

- Location of solar plant and substation
- Meet specifications set by the client
 - DC Voltage: 1000 V
 - Inverter: Eaton 1666kW
 - Panel: Hanwha 325W
 - ILR: 1.30
 - Fixed rack system

- Solar power plant array design
- Voltage drop calculations
- Substation diagrams
 - Relays and controls
 - 3 phase drawings
 - Communications

Deliverables

- Man Hour Budget
- Solar plant design
 - Location
 - Number of components and total cost
 - Plant layout
 - Wiring and conductor sizing

Substation Design

- Feeder and collector diagrams
- Key protection Diagram
- AC drawings
- Relay diagrams
- Communication diagrams

Project Plan: Workflow Diagram

Resource Requirements

Solar Power Plant

- Equipment
 - 238,032 solar panels
 - 792 combiner boxes
 - 36 inverters
 - Conductors/Cables
- 244 acres of land
 - We found a 560-acre land for sale for \$195,000

Substation

- Equipment
 - 12 collectors
 - 3 feeders
 - Surge arrestors
 - Transformers
 - Conductors/cable

Project Schedule For Fall 2018

FALL 2018

Finalize Deliverables

Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Meetings (Client and Advisor) Documentation Team roles Scope and Goal Setting w/client Research project/justification of components Solar plant size and cost determination Solar panel layout drawings feeder + collector research and design Solar plant layout review Key protection and single line Arcadia drawings AC 1 and 2 drawing reserch and reviewing **Review of Deliverables** up to date

Key	
Overrun	
Projected	
Break	

System Design

2/////////

System Requirement

• Compliance with the following NEC codes:

NEC Code	Description	How to Check	Design Steps				
Article 300.50 and Table 300.50	Discusses acceptable depth to bury conductors	Using this information during to plan wiring	Design a plant layout that applies this information				
of conductors under		Ensure that we select the right conductors for our conditions	Choose wires that satisfy our conditions and implement them into the design				
Article 310.15 and table 310.15	Defines ampacities for different conductors	Using this information in the voltage drop calculations	Applying values from calculations into conductor sizing				
Section 310.120	Explains necessary markings for different conductors	Using this information to choose the right type of conductors	Choose wires with the right markings				

Functional Decomposition

Part	Input	Function	Output			
Solar Modules	Sunlight	Convert sunlight into DC power	DC power			
Combiner Boxes	Current from strings	Combine the currents before sending it to inverter	Combined currents			
Inverters	DC Voltage from array	Convert DC voltage to AC voltage	AC Voltage			
Transformer	Voltage from inverter	Step up voltage	Voltage proportional to input voltage that goes to feeder			
Relays	Current in line	Measure the current in a line	Current in line			
Current Transformer	Currents from a line	Measure alternating current	Current proportional to input current			
Surge Arrest	Voltage in line	Protect equipment from overvoltage transients	Voltage in the line			

System Analysis

- Array parameter tool
 - Determine number of components and verify the voltage and power of the system
- Voltage Drop Calculations
 - Carried out conductor sizing by analyzing the currents in the plant at different points.
- Correspondence with seasoned engineers (Client)

Detailed Design

2////////

Overview of Designs

	Drawing List	
Drawing Number/Name	Description	State
sd-26-1-1 single array	Wiring diagram of a single array	Completed
sd-26-1-1 power plant	Wiring diagram of the entire solar plant	Completed
sd-26-1-2 collector	Collector diagram	Completed
sd-26-1-2 feeder	Feeder diagram	Completed
sd-26-2-2 key prot	Substation key protection diagram	Completed
sd-26-2-2 ac1	Three-line diagram	In Progress
sd-26-2-2 ac2	Three-line diagram	In Progress
sd-26-2-2 it rel	Installation relay diagram	Not Started
sd-26-2-2 pri rel	Primary relay diagram	Not Started
sd-26-2-2 ethernet port	Ethernet port diagram	Not Started
sd-26-2-2 bu relay	Back-up protection diagram	Not Started

Location Decision

Solar Power Plant

- Solar modules
- Combiner boxes
- Inverters

The solar plant generates, collects energy, and sends it to the substation.

Single Rack Layout

Single Rack Layout: 2x19 Solar Panels

Single Array Layout

Solar Plant Layout: 36 Arrays, 36 Inverters

Solar Plant Layout

Solar Power Plant Wiring Diagram

Substation

- The one-line diagram
- The key protection diagram
- The three-line diagram
- Protection and controls schematics

The substation steps up the voltage to reduce power loss during transmission and transfers the power to the main grid.

Testing Evaluation Plan

Array parameter tool:

- Spreadsheet given by the client to determine the specification of the project.
- Determine the number of (solar panels, combiner boxes, inverters)
- We also use it to determine the ILR, the size of the plant, and the cost of the project.

Compliance with NEC codes:

- Checking design against the codes specified
- Calculating the conductor sizes and the voltage drop according the code.

Correspondence with Client :

• Due to the nature of the project we used the client as a verification tool to monitor our progress and accomplishment.

Conclusion

Current project status with respect to milestones

- Completed all the deliverables for this semester:
 - Substation one-line drawing and solar plant array layout/drawing
 - Engineering man-hour budget, project plan, design document, and team

website. http://sdmay19-26.sd.ece.iastate.edu/

Plans For Next Semester

Weeks	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
Project																			
ptimization																			
C 1 drawings																		Key	
C 2 drawings																		5	
Relay drawings																		0	
communication																		Over	run
lrawings																		Proje	ected
leview deliverables																		Brea	k
Feeder drawings																			
Review deliverables																			

Thank You For Listening!

Any Questions?